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Abstract 

Given a faithful parameterization P(t) of a rational plane curve, an inversion formula t = 
f(x,y) gives the parameter value corresponding to a point (x,y) on the curve, where f is a 
rational function in x and y. We investigate the relationship between a point (x*, y*) not on the 
curve and the corresponding point P(t*) on the curve, where t* = f(x*, y*). It is shown that for 
a rational quadratic plane curve, P(t*) is the projection of (x*, y*) from a point which may be 
any point on the curve; for a rational cubic plane curve, P(t*) is the projection of (x*, y ' )  from 
the double point of the curve. Applications of these results are discussed and a generalized result 
is proved for rational plane curves of higher degree. 

1. Introduct ion 

Rational curves are widely used in CAGD. Here we study one problem in the applica- 
tion of rational plane curves. Given a point P = (x, y) on a faithful rational plane curve 
P ( t ) ,  sometimes it is necessary to know the corresponding parameter value. A formula 

that gives this parameter value t is called an inversion formula of P(t). But given a 
poinl P* = (x*, y*) not on the curve, a parameter value t* can also be obtained through 
the inversion formula, in general. Here we do not concern ourselves with finding the 
inversion formulae of a rational curve, for which the reader is referred to (Goldman 
et al., 1984). This paper focuses on revealing the geometric relationship between P* 
and the corresponding point P(t*) on the curve. This question is posed and briefly 
addressed in (Goldman et al., 1984). 
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In order to clearly formulate the problem and present the solution, we first make some 
conventions on notation. C denotes the field of  complex numbers, and ~ its subfield of  
reals. For a field K, K[t] and K[x,y] denote the domains of  polynomials in one and 
two variables over K, respectively; and K(t) and K(x, y) denote the quotient fields of  
K[t] and K[x, y], respectively. For instance, 7~(t) is the field of  rational functions of  
t with coefficients in 7~. In the following discussion all algebraic equations are assumed 
to have coefficients in 77,.. A complex point A = (a l , a2 )  in the affine plane C 2 is called 
a real point if al and a2 E 7~. A = (81,~2) denotes the conjugate point of  A, where 
fii is the conjugate of  a i, i = 1,2. Note that if A satisfies a polynomial equation or a 
system of  polynomial equations with real coefficients, so does ,4. 

We will consider the rational plane curve U given by the parameterization 

P(t) = (x(t) ,  y(t) ) = ( f l  ( t ) /g( t ) ,  f2( t ) /g( t )  ), (1) 

where f l ( t ) ,  f2(t)  and g(t) E 7~[t] have no common factor. The degree of  P(t) 
is denoted by deg ( P  (t)  ) = max {deg ( f l ) ,  deg ( f2 ) ,  deg (g) }. In CAGD applications it 
is usually assumed that t E 7~ so that (1) yields a real locus. But we shall often 
consider the case in which t E C, mainly because the algebraic closure of  C facilitates 
our theoretical development. Nevertheless, we will indicate from time to time whether 
the obtained results are valid for the case of  t E 7~. Curves resulting from the two cases 
are denoted by U ( ~ )  and U(C),  respectively; and obviously, U(T4.) C U(C). When 
we do not wish to distinguish these two cases, the curve is simply referred to as U. 
In order to carry out our discussion in a complete sense, we will sometimes resort to 
points at infinity and use homogeneous coordinates, and the parameter of  a curve will 
be allowed to take the improper value oc. Accordingly, U ( ~ )  and U(C) are assumed to 
contain all real and complex points of  the curve at infinity, respectively. P (t)  is called 
a parameterization of  the curve U, which is treated as the locus traced out by P(t) as t 
runs through 7~ or C. Evidently no two distinct points on U(C) correspond to the same 
parameter value. We also call P (t)  a curve when there is no danger of  confusion. 

Definition. P ( t )  is called a faithful parameterization of U(C) if, with at most a finite 
number of  exceptions, distinct values of  t E C give distinct points on U(C). 

Replacing C by 7~ in the above definition, we can define a faithful parameterization of  
a real curve U(7~). It is evident that P(t) is a faithful parameterization of  U(7~) if it is 
a faithful parameterization of  U(C). We will see later that the converse is also true. By 
the Lfiroth Theorem (Walker, 1950) any rational curve has a faithful parameterization. 
Also a parameterization is faithful if and only if it is of  the lowest possible degree among 
all the parameterizations of  U (Sederberg, 1986). Hence from now on, we assume that 
any P(t) we discuss is a faithful parameterization of  U. With this assumption, it is 
sensible to call U a rational plane curve of  degree n = d e g ( P ( t ) ) ,  which is independent 
of  any particular parameterization of  U. 

Given a point (x,y) on a rational curve U(7~) : P(t),  there is a formula t = 
f ( x ,  y) C ~ (x ,  y) giving the corresponding parameter value t E ~ ,  with only a finite 
number of  exceptional points (x, y) .  This is also true for a point (x, y) on U(C),  but 
with the resulting t E C. Such a formula is called an inversion formula of  P(t).  It is 
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known that an inversion formula of  a rational curve of  degree n ~> 3 can be expressed 
as t = N(x,y) /M(x,y) ,  where N(x,y) and M(x,y) C ~[x,y] are of  degree at most 
n - 2; and there exist curves for which the upper bound n - 2 can not be reduced. For 
a rational quadratic curve an inversion formula is t = N(x, y)/M(x, y), where N(x ,  y)  
and M(x,y) E ~[x,y] are linear in x and y. These results about inversion lormulae 
can be tbund in (Goldman et al., 1984). 

If a rational curve P(t) is faithful in 7~, then there exists an inversion formula 
t = N(x ,y) /M(x,y)  of P(t). It follows that P(t) is also faithful in C since this 
inversion formula is also valid for points on U(C). The only possible exceptional points 
on the curve that correspond to more than one parameter values are intersections of  
M(x., y)  = 0 and N(x, y)  = 0, therefore their number is finite. 

Given an inversion formula t = f ( x ,y )  of P(t), a point (x*,y*) not on the curve 
also corresponds to a parameter value if substituted into t = f (x ,  y), therefore there is 
the question of  what is the relationship between the point (x*, y* ) and the corresponding 
point P(t*) on the curve, where t* = f(x*~y*). By the rational linearity of  f ( x , y )  in 
the case of  rational quadratic and cubic curves, it immediately follows that t = f ( x ,  y)  
determines a family of  straight lines with one parameter t, which is easily seen to be a 
pencil of  lines. Thus a preliminary interpretation of  the inversion formulae lor rational 
quadratic and cubic curves is that P(t* ) is the projection of  P (x* ,  y*) from some point 
A, which is the center of  the pencil defined by t = f ( x , y )  (Goldman et al., 1984). 

In the lol lowing sections we will study in detail the inversion formulae in the case 
of  rational curves of  degree n = 2 and 3. The main results are that in the case of 
n = 2, P(t*) is the projection of  (x*,y *) from a point A which can be any point 
on the curve, with different points corresponding to different inversion formulae of the 
same parameterization P ( t ) ;  in the case of  n = 3, P(t*) is always the projection of  
( x * , y * )  from the only double point of the curve. We will also generalize the above 
result for rational plane curves o f degree n ~; 4, that i s, i f t = N ( x, y ) / M  ( x, y ), N ( x, y ) 
and M(x,y) ~ T~[x,y], is an inversion formula of  a rational plane curve P(t). then 
N(x,y) = 0 and M(x,y) = 0 both pass through all the singular points of  P(t). 

The remainder of  this paper is organized in the following way. In Section 2 some 
preliminaries are reviewed; they are mainly basic and relevant results in the theory 
of  algebraic curves. In Section 3 we explain the interpretation of inversion formulae 
for rational linear and quadratic curves. Rational cubic curves are addressed separately 
in Section 4 due to their importance in CAGD applications. Some general results are 
discussed in Section 5. 

2 .  P r e l i m i n a r i e s  

This section contains some facts about rational plane curves to be used later. A 
faithful rational plane curve P ( t )  of  degree n is an irreducible algebraic curve of  order 
n, with an algebraic equation being F(x, y) = 0, where F(x,y) C ~[x, y] is of  degree 
n. F(x,y) = 0 is also called the implicit  form or implicit  equation of  P(t). More 
precisely, every point  of  F(x, y)  = 0 corresponds to at least one parameter t C C; and 
every real point of  F(x,y) = 0 corresponds to at least one parameter t ~ 7~, except 
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isolated real points of  F(x ,y )  = 0, which correspond to some t E C, e.g. an acnode 
of  a cubic. Furthermore, every point (or real point) of  F(x ,y )  = 0 corresponds to a 
unique parameter value t E C (or t E 7~), in the sense that it is yielded by P(t) ,  with 
only a finite number of  exceptions. These exceptions are all ordinary singular points 
of  F(x, y) = 0. Hence we can reasonably use U ( ~ )  to denote the set of  all real points 
of  F(x, y) = 0, excluding all the isolated real points, while using U(C) to denote curve 
F(x, y) = 0 in the complex affine plane C 2. 

A point (x0, Y0) is called a k-foldpoint of  F(x, y) = 0 if all j- th partial derivatives of  
F(x, y), j = O, 1 . . . . .  k - 1, vanish at (x0, Y0), and at least one k-th partial derivative of  
F(x, y) does not vanish at (x0, Y0). k is called the multiplicity of (x0, Y0) on the curve 
F(x ,y )  = 0. A point not on the curve is said to have multiplicity 0. A k-fold point is 
said to be singular if k ) 2, while a singular point with k = 2 is also called a double 
point. A singular point with all its nodal tangents being distinct is called an ordinary 
singular point, otherwise a nonordinary singular point. An algebraic curve is said to 
be rational if it has a rational parameterization. It is well known that an irreducible 
algebraic curve of  order n is rational if and only if it contains l ( n  - 1 ) (n - 2) double 
points (Walker, 1950), assuming that the number of  double points in a multiple point 
is counted properly, i.e. a k-fold point accounts for at least ½k(k - 1) double points. 

A=½ (n - 1 ) (n  - 2) is the maximum number of  double points an irreducible algebraic 
curve of  order n can possess. 

From the above facts it follows that a nondegenerate rational quadratic curve has no 
singular point. A rational cubic plane curve has exactly one double point, which may be 
a crunode, a cusp, or an acnode (Patterson, 1988). This only double point, finite or not, 
must be real, for if the double point Q is not real, then its conjugate point Q v~ Q will 
also be a double point of  P(t) ,  contradicting the fact that an irreducible cubic can have 
at most one double point. The configuration of  singular points of  a higher degree curve 
can be very involved. For this the interested reader may consult books on algebraic 
curves, e.g. (Walker, 1950). 

Given the rational parameterization of  a curve, its implicit form, or the algebraic 
equation, can be found using resultants (Goldman et al., 1984). Here we are more 
interested in the converse problem, i.e. finding a parameterization of  a rational curve 
from its implicit form. It is important to note that both problems have closed form 
solutions with respect to the coefficient field; for instance, if the algebraic equation 
is given by F(x ,y )  = 0 with F(x ,y )  E ~[x ,y] ,  then the resulting parameterization 
should be P(t)  = ( x ( t ) , y ( t ) )  with x(t)  and y(t)  C ~ ( t ) .  Here we will briefly review 
how to parameterize algebraic curves of  order n = 2 or 3. Given an algebraic curve 
F(x ,y )  = 0 of  order n = 2 or 3, which is rational, where F(x ,y)  E TC[x,y], select a 
point A = (al,a2) E U(C) , which may be any point on the curve when n = 2, but must 
be the (real) double point when n = 3. By this choice of  A, the straight line y - a2 = 
t(x - a l ) ,  t E C, intersects the curve at exactly one other point P(t)  = ( x ( t ) , y ( t ) )  
besides A, which yields a rational parameterization of  F(x ,y )  = 0. For A E U(7~) 
it can be shown that x(t)  and y(t)  E 7~(t); otherwise, x(t)  and y(t)  C C(t). A 
comprehensive discussion of  parameterizing algebraic curves of  arbitrary order that are 
rational can be found in (Abhyankar et al., 1988). 
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The following lemma is needed later. Since it is a basic result about algebraic curves 
(Walker, 1950), it is given without proof. 

Lemma 1. Let U be an algebraic curve oJ order n without multiple components in the 

complex projective platte. Through an r-fold point A of  U, 0 ~ r <~i n, there e~4sts a 

straight line that intersects the curve U in another n - r distinct points besides A. 

3. Interpretation for rational linear and quadratic curves 

In this section we first use the rational linear curves as an example to illustrate some 
basic problems in the study of  inversion formulae. 

Lel a straight line be represented as the rational linear curve P ( t ) = ( r ( t ) , y ( t ) ) ,  

where 

_ _ _  b o t  + b t  x ( t )  a o t + a j ,  y ( t ) -  - - ,  (2) 
co t 4- Cl cot 4- cl 

and (bocl - blco) 2 + (coal - cla0)  ? 4= O. This line has implicit  equanon 

(bocl b jco)x  + (coal - c lao)y  + aobl - aibo = O. 

From (2)  we immediately obtain two inversion fornmlac for P ( t ) ,  

al -- c lx  bl - c l y  
i' - and t - 

ao - cox bo - coy" 

in each case assuming that the denominator does not vanish identically. It is easy 
to tell the interpretation of  these inversion formulae. For example, all points having 
the same abscissa yield the same parameter value through the tirst formula, i.e. given 
point ( x * , y * )  not on the straight line, its corresponding point P( t*) ,  t* = (a] 

c l x * ) / ( a o  - cox*), is the projection of ( x* ,y* )  parallel to the y axis. Notice that 
the inversion formula for a rational linear curve is not unique. In general, we want to 
know whether the inversion formula for a rational plane curve is unique, as well as the 
geometric interpretation of  an inversion formula. In the case of  the rational linear curve, 
all its rational linear inversion formulae are characterized by the following theorem. 

Theorem 1. Given any point with homogeneous coordinates ( ~(, Y, l~/) not on the line 

(2) ,  there is an inversion formula for  (2)  of  the form 

t = . f ( x , y )  z 
N ( x , y )  

M ( x , y )  ' 

wher, o N ( x, y) = 0 and M ( x, y) = 0 am two straight lines intersecting at ()(, f / f f ) .  

Proof.  Let the homogeneous expression of  (2)  be ( X ( t ) , Y ( t ) ,  W ( t ) ) ,  where x ( t )  = 
X ( t ) / W ( t ) ,  y ( t )  = Y ( t ) / W ( t )  and X( t ) ,  Y ( t ) ,  and W(t )  are all linear in t. Let 
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~4 (x , y )  = ~" Y(ac)  , ~ l ( x , y )  = ~" Y(0) (3)  

~v w ( ~ )  fv w(o) 

~ l ( x , y )  = 0 and f ¢ ( x , y )  = 0 are the equations of  the lines through (X,~' ,  VV), 
(X(oc), Y(oc), Z(oc) ) and (X, f', W),  (X(0), Y(0), Z(0) ), respectively, so the lines 
~4(x , y )  = 0 and N ( x , y )  = 0 intersect at ( ~ ' , f ' , f f ' ) .  Note also that f ( x , y )  =_ 
~ I ( x , y ) / ~ l ( x , y )  is rational linear in x and y; therefore f ( x ( t ) , y ( t ) )  is rational 
linear in t. Let 

f ( x ( t ) ,  y ( t )  ) - a l t  + #---------21 
A2 t + ~2 

By (3)  f ( x ( O ) , y ( O ) )  = 0 ,  f ( x ( o c ) , y ( o e ) )  = o~. Therefore/Zl = A2 = 0  and A1 va 0, 
#z 4: 0. Hence 

Alt  
f ( x ( t ) , y ( t ) )  = - - .  

~2 

The proof  is completed by letting f ( x ,  y)  = ( # 2 / A . l ) f ( x ,  y ) .  [] 

We now turn to the study of  rational quadratic curves. All  faithful rational quadratic 
curves are nondegenerate conic sections. Given a rational quadratic curve U: P ( t )  = 
( x ( t ) , y ( t ) ) ,  

a2t 2 + al t  + ao bzt 2 + bit  + bo 
x ( t )  = , y ( t )  = , (4)  

c2t 2 + Clt ÷ co c2t 2 ÷ Clt + co 

its inversion formula can be obtained by solving for t from the system 

( c 2 x -  a2)t  2 + ( C l X -  a l ) t  + ( c o x -  ao) = 0, 

(c2y - b2)t 2 + ( c l y -  b l ) t  + (coy - bo) = 0. (5)  

The solution is 

- [ (b2co - boc2)x + (aoc2 - a2co)y + (a2bo - aob2) ] N ( x , y )  
t = ~ - -  (6)  

(b2cl - blC2)X + (a lc2 - a2cl )y  + (a2bl - a lb2)  M ( x , y )  ' 

where M ( x , y )  and N ( x , y )  E ~ [ x , y ] .  Eq. (6)  represents a family of  straight lines 
with one parameter t. Its envelope is the intersection of  M ( x , y )  = 0 and N ( x , y )  = O, 
which will be called the center of  the inversion formula, which is rational linear. The 
intersection of  M ( x , y )  = 0 and N ( x , y )  = 0 is taken to be a point at infinity in case 
they are parallel to each other. Since t = N ( x , y ) / M ( x , y )  is not a constant, straight 
lines M ( x , y )  = 0 and N ( x , y )  = 0 are not coincident. 

Theo rem 2. The center A o f  the inversion formula (6)  is on the conic section defined 
by (4) .  And corresponding to any point A C U ( ~ )  there is an inversion formula 
t = l V ( x , y ) / ] Q ( x , y ) ,  with center at ,4, where b l ( x , y )  and M ( x , y )  C ~ [ x , y ]  are 
linear. 
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B I~ 

(~) (b) 

Fig. 1. Illustrations for the proof of Theorem 2. 

Proot;  First we remark that all points on the same line of  the pencil of  (6) ,  except the 
center of  the pencil,  yield the same parameter value t if substituted into (6) .  

Since A, as the intersection of  M(x ,y )  = 0 and N(x ,y )  = 0, is real, A E U(C) 
implies A C U(7~).  Hence we suppose that A is not on the curve U(C). Then by 
Lemma 1 there exists a line toM(x,y) - N(x ,y )  = 0 that intersects U(C) in exactly 
two distinct points Pl and P2. So the two points PI and /'2 have the same parameter 
value to E C. This contradicts that U(C) has parameterization P(t) .  

Now we prove the second part of  the theorem. First assume that neither M(x, y) = 0 
nor N(x ,y )  = 0 is tangent to U. Let /~ be any point on U(7~). Let B and D be 
the intersections of  M(x ,y )  = 0 and N(x ,y )  = 0 with the curve U(C) besides A, 
respectively. See Fig. l ( a ) .  Apparently B and D C U ( ~ ) ,  for otherwise the real line 
M(x ,y )  = 0 or N(x ,y )  = 0 would intersect the conic in their conjugate points /~ and 
/) ,  respectively, which is impossible since they already pass through A c U ( ~ ) .  Let 
lxy = 0 denote an equation of  the straight line passing through points X and Y, with XY 
standing for AB, AD, ftD or AB. Then lxr E TC[x, y]. We assume B 4: fi, and D 4: A; 
the case of  B = A or D = A is similar to that below, where one of  M(x ,y )  = 0 and 
N(x, y)  = 0 is tangent to U at A. By the familiar property of  a conic pencil (Faux and 
Pratt, 1979), the equation of  U can be expressed as 

[ ABl AD -- AI ADI AB = O, (7)  

where A is easily seen to be a real constant. In particular, we may choose IAB = M(x, y) 
and lad = N(x,  y). For any point (x, y) on U, when M(x, y) 4:0 and ldB(x, y) 4: O, 
we obtain, by (7)  

t = N(x, y ) /M(x ,  y) = A ldD . (8)  
l~B 

So t = MAD/lAB represents a pencil with center at 3,. Denoting MAD and I~8 by N(x ,  y)  
and M ( x , y )  respectively, we have ~4(x,y) and N(x ,y )  E ~[x ,y] .  

If  one of  N(x ,y )  -- 0 and M(x ,y )  = 0 is tangent to U at A, then the other is not, 
since they are not coincident. Without loss of  generality assume that N(x, y) is tangent 
to U. Then it can be shown that the equation of  U is still expressible by (7) ,  but with 
D being replaced by A and IAA being interpreted as the tangent of  U through A. See 
Fig. l ( b ) .  This also includes the case of  either B -- ,4 or D = A mentioned above. 
The remainder of  the proof  is the same as the preceding case where N(x, y) -- 0 and 
M(x., y)  = 0 are not tangent to U. [] 
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In (8) t = 0 implies N ( x , y )  = 0, therefore D = P ( 0 ) ;  similarly, B = P(ocz). Thus 
for any A the equations lAD = 0 and IAB = 0 can be easily obtained, and A can be 
obtained from the x( t ) ,  y ( t ) ,  and t value of  any point on the curve which is not A, B 
or D. 

If  a point ,4 E U(C) is taken as the center of  an inversion formula, we have the 
following theorem. 

Theorem 3. Given rational quadratic curve U : P( t )  defined by (4), and a point 
,4 E U ( C ), there corresponds a rational linear inversion formula t = N ( x, y ) / ~l ( x, y) 
of P ( t ) with center at ,4, where M ( x, y) and hi(x, y) E C [ x, y ] . Furthermore, ~4 ( x, y) 
a n d / V ( x , y )  E 7-~[x,y] if and only if A C U ( ~ ) .  

Proof. The proof of  the first part is similar to that of  Theorem 2. We just need to prove 
the second part. 

The sufficiency follows from Theorem 2. The necessity part is obvious by noting that 
if both M ( x , y )  and hi(x, y)  E 7~[x ,y ] ,  then/~ E U(7~), since it is the intersection of  
two real lines. [] 

The following theorem shows that a rational linear inversion formula with a given 
center is essentially unique. 

Theorem 4. Let t = N ( x , y ) / M ( x , y )  be a rational linear inversion formula with 
center A for a rational plane curve U : P( t ) .  I f  t = N ( x , y ) / l Q ( x , y )  is another 
rational linear inversion formula of P ( t ) with center A, then l(4 ( x, y) = hM ( x, y) and 
Fl(x, y) = AN(x,  y) for some nonzero constant ,~. 

Proof. Since ~ / ( x , y )  = 0 and ,~ (x ,y )  = 0 each contain A, they belong to the pencil 
N(x,  y) - tM(x ,  y) = 0. Therefore M(x,  y) = A1M(x, y) + IzlN(x,  y) and N ( x , y )  = 
a2M(x ,y )  + t z e N ( x , y )  for some constants AI, /Zl, /12, /z2. So 

N(x ,  y) A2M(x, y) + #2N(x ,  y) 

M(x ,  y) AlM(x ,  y) + tz lN(x,  y) 

A 2 + t z 2 N ( x , y ) / M ( x , y )  A2 +/x2t  

• ~J + t Z l N ( X , y ) / M ( x , Y )  ,~l + # i t '  

and it follows that A2 = /xl = 0 and /z2 = ,~1 v~ 0. Thus M ( x , y )  = A1M(x,y)  and 
fC(x,y) = ) t~N(x,y) .  [] 

Now we consider some application issues of  the inversion formulae of  rational 
quadratic curves. We ask the following questions. Which point P(to) is the center 
of  the inversion formula given by (6 )?  How do inversion formulae with different cen- 
ters arise naturally? If  inversion formulae with different centers are available, which of  
them is preferable to the others? 

Consider P( t )  defined by (4).  Since P( t )  is faithful, given a point on the curve U, 
there is unique t satisfying (5).  Treating t and t 2 as unknowns, t can be solved for in 
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two ways. The first expression is 

C2X -- a2 CoX --  aObo 
[c2 V b2 c o y  

t = ~ (9) 
C~ X . --  (12 CIX --  a I 

Ic2y b2 c l y  bl 

which is the same as (6).  Rewriting (5) as 

(c2x - a2) t  4- ( c l x  - al)  + (cox - a o ) / t  = O, 

(c2y - b2) t  4- ( c l y  - bl ) + (coy - b o ) / t  = O, 

and treating t and l i t  as unknowns, we obtain another expression of  t, 

c~yCtX - al. coyC°X - aObo 
/71 (10) [ ~  , 

C2X -- a2 CoX --  ao 

Ic2y b2 coy - bo 

Theorem 5. The inversion formula  (9) has its center at P ( o c ) .  The inversion formula  

(10) has its center at P(O) .  

Proof. Consider (9) first. To facilitate the discussion of the intersection of  two straight 
lines in the affine plane we will use homogeneous coordinates. Let x = X / W  and 
y = }JW. The center of  (9) is the intersection of  two straight lines, 

(b2co boc2)X -4- (aoc2 - a2co)Y 4. (a2bo - aob2) W = 0 

and 

(b2cj - b~c2)X + (alc2 - a 2 c l ) Y  + (a2bl - a l b 2 ) W  = 0, 

which are, in fact, two straight lines passing through the pair of  points (a0, b0, co) and 
(a2, b2, c2), and the pair of  points (al ,  bl, cl ) and (a2, b2, c2), respectively. Therefore 
they intersect at ( a 2 , b 2 , ¢ 2 ) ,  which is P ( o c ) .  Note that ( a i ,  b i , c i ) ,  i = 0, 1,2, are 
distinct points since P ( t )  is nondegenerate. 

A similar argument shows that the center of  (10) is P ( 0 ) .  [] 

From the above results it is clear that for rational quadratic curves different inversion 
formulae arise naturally when different approaches are employed to find them. In CAGD 
the B6zier representation of  curves is very popular. So here we illustrate the above results 
by some examples in the setting of  rational quadratic B6zier curves. 

Example  1. Let P (t) be a rational parameterization of  the semicircle x 2 +y2 __= 1, x >~ 0, 
given by the Bgzier curve 

P ( t )  = PoBo.2(t) -4-PlB1,2(t) 4.  P2B2,2(t) 
, t E  [0, 1], ( l l )  

B0,2(t) + B2,2(t) 
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y 
tP(0)=(0,1) 

/ 

\ \  j / ~  -- 
\ 

P(1) = (o,-1) 

P(m) * 

/9(1) = (0,-1) 

(~) (b) 

Fig. 2. The geometric interpretations of the inversion formulae 12) (Fig. (a)) and (13) (Fig. (b)). 

where Bi,2(t) = ( ~ ) t i ( l -  t) 2-i, i =  O, 1,2, are second-degree Bernstein polynomials; 
P0 = (0, 1), P1 = (1 ,0 ) ,  and P2 = ( 0 , - 1 ) .  Writing (11) as 

2t - 2t 2 1 - 2t 
x( t )  - l _ 2 t + 2 t 2 ,  y( t )  = l _ 2t + 2t2, 

then using (9) and (10) ,  we obtain two inversion formulae of  P ( t ) :  

x - y + l  
t - (12) 

2 ( x +  1) 

and 

l - y  
t - . (13) 

x - y + l  

It is easy to check that (12) is a pencil with center P (co)  = ( - 1, O); (13) is a pencil 
with center at P ( 0 )  = (0, 1). See Figs. 2(a)  and (b).  

The geometric interpretation of  a rational linear inversion formula t = N(x ,  y)/ l f4(x,  y) 
with center at A is as follows. For any (x*,y*) ~ fL let t* = 1V(x*,y*)/1Q(x*,y*). 
Then P(t*)  is the projection of  (x*,y*)  from A onto the curve P( t ) .  Now consider 
the following problem in application: Given a point P* near the curve U ( R )  : P( t ) ,  
find a point P on U ( ~ )  that is closest to P*. This problem arises naturally in practice. 
Due to accumulated computational errors resulting from the limited precision of  floating 
point representation, it is almost impossible to give a point smack on a curve as intended 
to be. If  one is satisfied with an approximate solution, inversion formulae can be used 
to solve this problem as follows. First calculate t* = f ( x * , y * ) ,  then P(t*)  can be 
accepted as a point on the curve that is quite close to P*, though, in general, P(t*)  is 
not the point that is closest to P* from the curve. 

Consider the rational linear curve defined by (2).  It is easily seen that if the center of  
its inversion formula is chosen to be the point with homogeneous coordinates (blco - 
boCl, aocl  - a l t o ,  0) ,  then the point P(t*)  is the closest point to P* from the straight 
line P ( t ) ,  for the center is a point at infinity which is on all straight lines perpendicular 
to the line P( t ) .  But in the case of  the rational quadratic curve the point P(t*)  is, 
in general, not the closest point to P* from the curve, no matter which rational linear 
inversion formula is employed; however, we can still tell that the inversion formula (12) 
is better than (13) ,  for in (13) if the point P* is given near the point (0, 1), P(t*)  
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j. 

" ~ 1 )  - (0. 1) 

Fig. 3. The geometric interpretation of the inversion formula (13).  

may be very far from P* relatively. See Fig. 2(b) .  In general, when the rational Bdzier 
representation is used, (9) gives a better inversion formula than (10) because we are 
only interested in the curve segment defined over [0,1], and P (oc ) ,  the center of (9), 
is outside the Bdzier segment. 

Another observation is that, even when (9) is used, the center of (9) still depends on 
the parameterization P(t), while the shape of the B6zier segment is parameterization 
independent. So there arises the question of what is the most appropriate parameterization 
of U when (9) is used as an inversion formula. We claim that, in general, the standard 
parameterization proposed in (Patterson, 1986), i.e. setting the weights associated with 
the two endpoints to one, is a satisfactory choice. The reason is as follows. Suppose that 
PoPIP2 is the control polygon of a rational quadratic B6zier curve P(t). It is known 
that Pj, P ( 1 / 2 )  and P ( o c )  are collinear (Lee, 1987). If the standard parameterization 
is adopted, P ( 1 / 2 )  is the intersection of the line through /)1 and M = (P0 + P2)/2 
with the curve U(7~). Therefore P(c)c) lies on the straight line P1M. In the case in 
which the shape of APoPIP2 does not differ very much from an isosceles triangle, i.e. 
IPoPll and [PIP21 do not differ much, P ( ~ )  is at a satisfactory position. The effect 
of reparameterization on the inversion formula derived from (9) is illustrated in the 
following example. 

Example  2. Still consider the rational quadratic B6zier curve (11), which is a standard 
parameterization. Through a parameter transformation 

2F 
I -- 

l + t "  

we obtain another parameterization of the semicircle x 2 + y2 = 1, x ~> 0, 

p(f) = ¼PoBo,2(?) + ½elBl,2(t') + P2B2,2(t') 

¼B0,2(?) + B2.2(?) ' (14) 

o r  

4~"- 4{ 2 1 - 2~"- 3f 2 
x(t') = 1 - 2 ~ ' + 5 ~ '  Y ( t ' ) -  1 - 2 ~ ' + 5 F '  

which is not a standard parameterization. Using (9) we obtain the inversion formula 
of (14) 
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?.= 2 x - y + l  (15) 
4 x + 3 y + 5 '  

which has its center at P(t')l~=~ = ( 4 ,  _~). See Fig. 3. Compared to Fig. 2(a) ,  it is 
easy to tell that (12) is a better inversion formula than (15).  

From (9) or (10) ,  and the remark after the proof of  Theorem 2, an inversion formula 
with any center ft, can be computed. This may be useful if it is known that a particular 
/~ yields a better inversion formula than one with center at P ( e ~ )  or P ( 0 ) .  

4. Interpretation for rational cubic curves 

The rational cubic curve is the most commonly used curve representation in CAGD. 
Because of  its importance in application and the simplicity of  its inversion formulae, 
this section is devoted to the discussion of  rational cubic curves. We start by reviewing 
briefly the Bezout resultant technique for rational cubic curves. A detailed discussion is 
contained in (Goldman et al., 1984). 

Let P ( t )  be a faithful rational cubic plane curve given by 

a3 t3 -k- a2t 2 + aj t  + ao b3t 3 ÷ b2t 2 + b~t + bo 

x ( t )  = d 3 t 3 + d z t Z + d l t + d o ,  y ( t )  = d 3 t 3 + d 2 t 2 + d l t + d o ,  

which can be rewritten as 

(a3 - d3x) t  3 + (a2 - d2x) t  2 + (al - dlX) t  + al - dlX = O, 
(16) 

(b3 - d3y) t  3 + ( b2 - d2y) t  2 + ( bl - d l y ) t  + bl - d ly  = O. 

Its Bezout resultant is 

R ( x , y )  =lRi,j(x,y)13×3 

~ , 2 ( x , y )  ~ , l ( x , y )  ~ , 0 ( x , y )  
= ~ , l ( x , y )  ~ . 0 ( x , y ) + ½ , 1 ( x , y )  ½,o(x ,y )  

½ ,o (x , y )  ½ ,o (x , y )  E,0 (x ,y )  

where 

(17) 

V r s ( X , y ) =  b~ - d r x  a s - d s x  
' dry bs dsy ' r , s = 0 , 1 , 2 , 3 ,  r 4: s. 

Then R ( x ,  y) = 0 is the implicit equation of  curve P ( t ) .  If  (x, y)  is given on the curve, 
the corresponding t satisfies the system 

RiA t2+R i ,2 t +R i ,3=O,  i =  1,2. 

It is shown in (Goldman et al., 1984) that a rational cubic curve has a rational linear 
inversion formula 

N ( x , y )  
t - - -  (18) 

M ( x , y ) '  
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tl I 59-6J '  = f) 

L 
/ 

192 / / ]91 

Fig. 4 Geomet r ic  interpretat ion o f  the inversion formula  for the rational cubic curve given in Ex. 3, with 

PII = ( ,0 ,0) ,  PI = ( 1 , 1 ) ,  P2 = ( 0 , 1 ) ,  p~ = ( 1 , 0 ) ,  w(i = w3 = 1, and wl = w2 = 2. The double  point is 

(1/2,3/5). 

where N ( x , y )  and M ( x , y )  C ~ [ x , y ]  are linear in x and y. (It  is also possible 
for a rational cubic curve to have a rational quadratic inversion formula.) Eq. (18)  
represents a pencil with center at the intersection of  N ( x , y )  = 0 and M ( x , y )  = O. 
Thus the geometric interpretation of  an inversion formula of  a rational cubic curve is 
a projection from some fixed point. This situation is quite similar to that of rational 
quadratic curves. The major difference between them is that the center of  rational linear 
inversion formulae for a cubic curve can not be altered. We state this as the following 
theorem. 

Theo rem 6. Let U : P ( t )  be a rational cubic curve. Any rational linear inversion 
,fbrmula of  P(  t) has its center A at the double point of U. Furthermore, up to a 
constant for  the coefficients', every rational linear inversion formula of U has the same 
expression. 

Proof.  Let a rational linear inversion formula be given by (18) .  Let A be its center. 
Suppose that A is not the singular point of  the curve U(C). Then by Lemma 1 there 
exists a line through A that intersects U(C) at two other distinct points, since U(C) is 
an irreducible cubic. That is, there exist two distinct points on U(C) having the same 
parameter value t E C. This contradicts the assumption that P ( t )  is a parameterization 
of  U(C). Hence A must be the singular point of  U. 

The second part of  the theorem follows from the first part and Theorem 4. E3 

E x a m p l e  3. Consider  the rational cubic plane B6zier curve P ( t )  defined by 

3 ~i--o wi~Bi, 3 (t) 
P( t )  = ( x ( t ) , y ( t ) ) =  ~ 3  wiBi,3(t) ' 

i---o 

where the B i , 3 ( t ) ' s  a r e  third degree Bernstein polynomials;  Po = ( 0 , 0 ) ,  Pl = ( 1 , 1 ) ,  
P2 = (0, 1), p~ = ( 1 , 0 ) ;  wo = w3 = 1, wl = w2 = 2. See Fig. 4. P( t )  can be written as 

7t 3 -  12t 2 + 6 t  - 6 t  2 + 6 t  

x ( t )  = _ 3 t 2 + 3 t + l  ' y( t )  - _3t2 + 3t + l 
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Then we have 

7t 3 + ( - 1 2  + 3x) t  2 + (6 - 3 x ) t -  x = O, 

( - 6  + 3y ) t  2 + ( 6 -  3 y ) t -  y = O. 

The Bezout resultant of  the above system is 

7 ( - 6 + 3 y )  7 ( 6 - 3 y )  - 7 y  
R =  7 ( 6 - 3 y )  1 1 y - 3 6  6 ( 2 y - x )  

- 7 y  6 (2y  - x) 6 (x  - y)  

The implicit equation of  P ( t )  is R = 0 or 

F ( x , y )  =_ 1225y 3 - 756x2y - 2520y 2 + 7 5 6 x y +  1512x 2 + 1 5 1 2 y -  1512x = 0. 

Adding the first row of  the above matrix to the second, we obtain 

7 ( - 6 + 3 y )  7 ( 6 -  3y) - 7 y  
R = O 6 -  10y 5y - 6x 

- T y  6 ( 2 y - x )  6 ( x - y )  

Therefore t satisfies 

7 ( - 6  + 3y ) t  2 + 7 ( 6 -  3 y ) t -  7y = O, 

( 6 -  1 0 y ) t + 5 y - 6 x = 0 .  

Solving for t, we obtain an inversion formula 

7( + 3y) - 7 y  
- 6 0  5y - 6x 5y - 6x 

t..~ 
7 ( - 6 + 3 y )  7 ( 6 - 3 y )  1 0 y - 6 "  

o (6 - 10y) 

By Theorem 6 this inversion formula is unique with respect to P (t) and the intersection 
of  5y - 6x = 0 and 10y - 6 = 0 is the double point of  P ( t ) ,  which is (1 /2 ,3 /5 ) .  See 
Fig. 4. 

It is also possible to obtain a rational quadratic inversion formula for the above curve. 
Solving for t from the first and third rows of  the Bezout matrix yields 

y (25y  - 36) - x (18y  - 36) N 2 ( x , y )  

t =  3 ( y - 2 ) ( 5 y - 6 x )  - M 2 ( x , y ) "  

M2(x ,  y) = 0 and N2(x,  y) = 0 are two conics, with the first being degenerate, which 
intersect at (0, 0) = P ( 0 ) ,  (1 /2 ,  3 /5 ) ,  and ( 1 , 0 , 0 ) ,  which are the homogeneous co- 
ordinates of  P(cxz); and P(cxz) is a double intersection. Notice that the singular point 
(1 /2 ,  3 /5 )  is still one of  the intersections and all intersections are on the curve P ( t ) .  

Since (18) represents a pencil that always has its center at the double point of  the 
cubic U, it can be used to find the singular point of  U without converting the parametric 
form of  the curve into the implicit form. All we have to do is find the inversion formula 
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of  the tbrm (18) ,  and then find the intersection of  M(x, y) = 0 and N(x, y) = 0. Note 
that what we obtain in this way are only the coordinates of the singular point. If  the 
corresponding parameter value(s)  is wanted, the inversion formula (18) cannot be used 
directly, because it is indefinite at the singular point. In this case, by the properties of  
the Bezout resultant, besides R = 0, the first two rows of  the Bezout resultant (17)  are 
linearly dependent,  and Rl,l :/: 0. So the parameters of  the singular point (x0, y0) are 
the roots of  the quadratic equation 

l~ 2(x0, Y0) t 2 + V3,1 (X0, Y0)t + ~,0 (X0, Y0) = 0. 

By this way it is found that the parameter values of  the singular point ( 1 / 2 , 3 / 5 )  in 
Example 3 are ( 7 ~  v / ~ ) / 1 4 .  

5. Some general results 

In this section we prove some general results for inversion formulae tbr the nth 
degree rational plane curve P(t) ,  n ~> 3. Let the irreducible implicit  equation of  P(t) 
be F ( x ,  y)  = 0. It is known that the inversion formula for a faithful n-th degree rational 
curve can be written as 

N ( x , y )  
t - - -  19) M(x,y)' 

where N(x ,y )  and M(x,y)  are polynomials  in x, y of  degree at most n - 2 ,  and they 
are relatively prime (Goldman et al., 1984). Note that the resultant approach mentioned 
in the: last section is not the only way to obtain an inversion formula. If  the procedure 
of  parameterizing a rational algebraic curve is known, an inversion formula can be 
derived directly (Walker, 1950). The envelope of  the family of  curves H(x,y; t )  = 
N(x ,y)  tM(x ,y )  is the set B which is determined by the system 

H(x,y; t )  =0, c~H(x,y;t)/&=O, 

i.e. M(x,y)  = 0 and N(x,y)  = 0. Since M(x,y)  = 0 and N(x,y)  = 0 are assumed to 
have no common component,  B is a set of isolated points, which are called the base 
point,; of the linear system H(x, y; t) = 0. Note that B does not depend on t. H(x, y; t) 
is sometimes abbreviated as H(t). 

If an intersection point of  F(x, y) = 0 and H(x, y; t) = 0 is a base point of  the system 
H(x, y; t) = 0, then it is called a trivial intersection, otherwise a variable intersection. 
Since P(t) is a parameterization of  F(x ,y)  = 0, there is only one variable intersection 
of  F = 0 and H(t) = 0, which is P(t) .  In fact, for some values of  t, P(t)  can be a base 
point; the essential difference between the two kinds of  intersections is that the former 
is not dependent on t, while the latter is. 

From the discussion of  the last section, two questions regarding the linear system 
H(x, y; t) = 0 arise naturally: Are all base points of H(x, y; t) = 0 on F(x, y)  = 0? 
Do the base points of  H(x,y; t) = 0 include all singular points of  F(x,y)  = 07 The 
answer to the first question is, in general, negative, as illustrated in the case of  rational 
linear curves; nontrivial examples can be given for rational curves of  higher degree 
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by using Bezout 's Theorem and counting the number of  intersections of  M ( x , y )  = 0, 
N(x,  y) = 0 and F(x,  y) = O, H(x,  y; t) = 0. Nevertheless, we will see later on that it 
is true for a special class of  curves and inversion formulae. As for the second question 
Goldman et al. (1984) show that all ordinary singular points of  U are base points of  
H(x,  y; t) = 0. The main result in this section is a generalization of  this result to include 
nonordinary singular points as well. Nonordinary singular points are often encountered, 
the cusp of  a cubic providing a familiar example. 

Theorem 7. All the singular points of U ( C ) : P ( t ) are intersection points of M ( x, y) = 
0 and N(x ,  y) = O. 

Before giving the proof we need some conventions on notation. For the concepts 
involved the reader is referred to (Walker, 1950). The order of  curve F ( x , y )  = 0 
is denoted by O r d ( F ) ,  which is the degree of  F( x , y ) .  The multiplicity of  a point 
P = (a,b) on F ( x , y )  = 0 is denoted by 

Mp--min{i 3j, O<~j<~i, 8iF(x'Y)oJxcg~_.ly (a,b)=/=O, O<.i<. O r d ( F ) } .  

A place v (P)  of  U(C) with center at point P is an equivalence class of  irreducible 
power series parameterizations (2( t ) ,  27(t)) of U(C) with centers at P. Here the center 
(2(0) ,27(0) )  of  a place is to be distinguished from the center of  a rational linear 
inversion formula defined previously. Ov(p)(F) denotes the order of  F ( x , y )  at the 
place v ( P ) ,  which is the lowest exponent of  the power series F ( 2 ( t ) ,  27(t) ), where 
(2( t ) ,2~( t ) )  is a representative of  the equivalence class v(P) .  Of course O~,(p)(F) is 
independent of  the choice of  the representative (2 ( t ) ,  27(t) ). For two curves F(x,  y) = 0 
and G(x, y) = 0, with no common components, it can be shown that ~ O,,(p)(G) = 
~-]~Ow(p)(F), where the first sum is taken over all places of  F with centers at a 
point P,  and the second sum is taken over all places of  G with centers at the same 
point P;  therefore 1p(F,G) := ~ O w ( p ) ( F )  = ~O~,(p)(G) is well defined and is 
called the number of intersections of  F ( x , y )  = 0 and G(x ,y )  = 0 at point P. Let 
I(F, G) = ~ Ip(F, G), with the sum taken over all points common to F ( x , y )  = 0 and 
G(x, y) = 0; I (F,  G) is called the number of  intersections of  F = 0 and G = 0. We also 
need the following three lemmas from (Walker, 1950), which are given here without 
proof. 

L e m m a  2 (Bezout 's  Theorem). When all intersection points of F ( x , y )  = 0 and 
G( x, y) = 0 are finite points, 

I(F,  G) = O r d ( F ) O r d ( G ) .  

Lemma 3. 

Ip(F,,G) >/ M p ( F ) M p ( G ) ,  

where the equality holds if and only if F = 0 and G = 0 have no common tangent at P. 
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Let Ry(F, G) be the resultant of  F(x, y) and G(x, y) with respect to y. Let P be an 
intersection of  F = 0 and G = 0, and let the abscissa of P be xp. 

L e m m a  4. If all other points common to F = 0 and G = O, besides P, do not have the 
abscissa xp, then Ip( E G) equals the multipliciO, of xp as a root of R>.( F, G). 

Proof  of  T h e o r e m  7. Let the irreducible equation of U(C) : P(t)  be F(x ,y)  = 0. Let 
T be the set of  all trivial intersections of  F(x, y) = 0 and H(x, y; t) = 0. Then T c_ B, 
the set of  all base points of  H(x, y; t) = 0. The only nontrivial, or variable, intersection 
between F(x ,y )  = 0 and H(x ,y ; t )  = 0 is P(t) ,  and T U  { P ( t ) }  is the set of  all 
intersections of  F = 0 and H(t)  = 0. We assume that all singular points of  F ( x ,  y)  = 0 
and points in T are finite points and have different abscissae; this can be achieved by 
appropriate choices of  the line at infinity and an affine representation of the plane. Note 
that the property we want to prove is not affected by such choices. 

We need to show that all the singular points of F(x ,y )  = 0 are trivial intersections 

with H(x, y; t) = 0. Suppose P0 = (x0, Y0) is a singular point of  U(C), i.e. Mp~)(F) -> 1, 
but P0 ~ T. We will proceed to obtain a contradiction. 

From the above supposit ion it follows that M(xo,Yo) and N(xo, Yo) are not both 
zero. Thus a definite and unique parameter value to can be obtained from (19) such 
that tt(xo, Y0; to) = 0 and P0 = P(to). By reparameterization, it can be assumed that t() 
is linitc. 

The concept of parameterizations of  a place on an algebraic curve enables us to talk 
about points on the curve which lie in the neighborhood of  a given point on the curve. 
Evidently, P(t)  := P(t  + to) is a parameterization of  a place with center at P0 since 
P(O) = P(to), t being in a neighborhood of  0 in C. We claim that we can choose 
tt = to + 6, with 16[ being so small that the following conditions are observed for 
Pj z P ( t ~ ) :  

( i )  Mp, ( F )  = 1, i.e. Pl = /5  (6)  is a simple point of  F ( x ,  y)  = 0, and P1 ~ T. This is 
~(n t ) ( n  2 ) )  possible because F(x, y) = 0 has only a finite number (at most 

of  singular points and I T ] is finite. Hence 

Mp,(F) < Mp o(F). 

any P = (xp, yp) E T 

Ip(F,H( t l ) )  <~ Ip(F,H(to)).  

(ii:) For 

( i i i )  

(2O) 

This is because, by Lemma 4, Ip(F,H(t))  is the multiplicity of  Xp as a root of 
R,. ( F, H ( t )  ), which is a continuous function of  t. So a sufficiently small change 
in t will not increase, but will probably decrease Ip(F, H(t ) ) .  Consequently 

~-~ lp( F,H(tl)  ) <~ Z 1 p (  F,H( to) ). (21) 
PGT PET 

Mp~(H(tl) ) <~ Me,,(H(to) ). (22) 

This is because 
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Mp(t)=min{i 3j, O<~j<~i, 0iF(x'Y)0JXCY'-Jy P(t)--/=0, 0 ~ < i < ~ O r d ( F ) } ,  

and each partial derivative of  F evaluated at P(t) is a continuous function 
of  t. So a small change in t will not increase, but will probably decrease 
Meet) (H(t)). 

(iv) O r d ( H ( & ) )  > / O r d ( H ( t 0 ) ) ,  (23) 

for the coefficients of  the highest degree terms of  H(x, y; t) = 0 are continuous 
functions of  t. 

(v)  Ip,(F,H(tl)) = mp~(F)mp,(H(tl)). (24) 

By Lemma 3 this holds if F(x,y) = 0 and H(x,y;tl) = 0 have no common 
tangent at PI. I f  for any t in a neighborhood of  to these two curves always 
have common tangents at P(t), then by definition, a nontrivial subcurve of  
F(x, y) = 0 is in the envelope of  the family H(x, y; t) = 0. But this contradicts 
the fact that the envelope of  H(x,y; t) = 0 is B, the set of  all its base points. 
So we can select tl in a neighborhood of  to such that (24) holds. 

Now we show that the above conditions lead to a contradiction. Note that TU {P(h )} 
is the set of  all intersections of  F(x,y) = 0 and H(x,y; tl) = 0. Let O r d ( H ( t l ) )  = m. 
By Lemma 2, 

tim = 

= 

Ord( F)Ord( H ( tl) ) 

E1p(F ,H( t l )  ) + Ip,(F,,H(tl) ) 
PET 

= Z I p ( F , H ( t l ) )  + Mp~(F)Mp,(H(tl)) 
PET 

< ~ 1p(F, H(to) ) + MPo(F)Meo(H(to) ) 
PCT 

Z I p  ( F, H ( t o )  ) + Ip o (F, H ( t o )  ) 
pET 

= Ord(F)Ord(H(to)) <. nm 

(by (24) )  

(by ( 2 1 ) , ( 2 0 ) , a n d  (22) )  

(by Lemma 3) 

(by Lemma 2 and (23) ) .  

This contradiction implies that P0 C T. [] 

Theorem 7 encompasses the case of  rational cubic curves. But since for rational cubic 
curves the inversion formula is known to be expressible as a rational linear function, 
it is possible to give a much simpler proof. The theorem is also valid for inversion 
formulae of  any degree i, not necessarily that i ~< n - 2. An implication of  Theorem 7 
is that when a linear system is to be determined to give a rational parameterization of  a 
rational algebraic plane curve F(x, y) = 0, the system must be required to pass through 
all the singular points of  F(x, y) = 0, as the approaches described in (Abhyankar et al., 
1988) and (Walker, 1950). 

The geometric interpretation of  a general inversion formula t = N(x, y)/M(x, y) can 
be given as follows. Let P* = (x*, y*) ¢ B be a point not on U : P(t). There is a unique 
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t* = N ( x * , y * ) / M ( x * , y * )  such that H ( x , y ; t * )  = 0 passes through P*. Then P ( t * ) ,  
the point on U corresponding to P*, is the only variable intersection of  F ( x ~ y )  = 0 
and H ( x , y ;  t*) = 0. Theorem 7 provides an important property of the linear system 
H ( x ,  y; t) = 0, which plays a crucial role in the geometric interpretation of  an inversion 
formula. As an analogue to the case of  rational linear inversion formulae we can think of 
the above interpretation of  higher degree inversion formulae as a generalized projection 
from the plane into the curve P ( t )  in question. 

The following discussion is to improve the understanding of  rational quadratic in- 
version formulae which come about naturally in the case of rational quartic curves. A 
rational quartic plane curve has either a triple point or three distinct double points. In 
the former case there always exists a rational linear inversion formula for P ( t ) .  In the 
latter case the minimum degree inversion formulae are quadratic. In this case we can 
show that all base points of  H ( x , y ; t )  = 0 are on P ( t ) .  

Theo rem 8. Let P ( t )  be a rational quartic plane curve with three distinet double 
points, attd t = N ( x ,  y ) / M ( x ,  y)  be a rational quadratic inversion formula f o r  P ( t ) .  
Then all base points o f  H ( x ,  y; t) - N ( x ,  y)  - t M ( x ,  y)  = 0 are on P ( t ) .  

Proof.  Let the implicit  equation of  P ( t )  be F ( x , y )  = 0. By Bezout 's  Theorem 
H ( x , y ;  t) = 0 has at most four distinct base points, as intersections of two conics. If a 
base point is an intersection of  multiplicity one between M ( x , y )  = 0 and N ( x ,  y)  = O, 

then it is called a simple base point. It is obvious that there are exactly four distinct 
base points of  H ( x ,  y; t) = 0 if and only if all the base points are simple. By Theorem 
7, H ( x , y ; t )  = 0 has a base point at each of  the three double points of F ( x , y )  = 0. 
Assume that H ( x ,  y; t) = 0 has four distinct base points; for otherwise there is nothing 
to prove. Therefore all the four base points must be simple. Suppose that a base point 
is not on F = 0. Because at each double point, except for a finite number of values 
of  t, the number of  intersections of  F = 0 and H ( t )  = 0 is two, there exists t such 
that, including the variable intersection P ( t ) ,  the total number of  intersections of F = 0 
and H ( t )  = 0 is 3 × 2 + l = 7, contradicting Bezout 's  Theorem which asserts that the 
number of  intersections of  a quartic curve and a conic is eight. Hence every base point 
of  H ( x , y ;  t) = 0 is on F ( x , y )  = O. [~ 

Theorem 8 and the geometric interpretation of rational quadratic inversion formulae 
are illustrated in the following example. 

E x a m p l e  4. Let a rational quartic curve be P ( t )  = ( x ( t ) , y ( t ) ) ,  

- - t  4 - -  2t 3 2t + l t 4 - -  2t 3 - 2t - 1 

x ( t )  = t 4 _ 4 t  3 _ 6 t  2 _ 4 t + 1 ,  y ( t )  = t 4 _ 4 t  3 _ 6 t  2 _ 4 t + 1 .  

Its implici t  equation is 

F ( x ,  y )  =_ x 4 + 2x3y + 2xy  3 + ya _ 2x 3 _ 2x2y _ 2xy2 _ 2y3 + x 2 + ),~ -,_ O. 

which has three distinct double points ( 0 , 0 )  = P ( ± i ) ,  ( 1 , 0 )  = P(1  ± ",,/2), and 
( 0 , 1 )  = P ( - 1  ± V~) .  The point ( 0 , 0 )  is an isolated real point. See Fig. 5. An 
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~e(o) = (1,-l)  

Fig. 5. The rational quartic curve P(t), given in Example 4, consists of the two solid curve segments in the 
figure. There are three double points: P ( - I  4- x/2) = (0, 1), P(I 4- v'~) = (1,0), and P(4-i) = (0,0), 
which is an isolated real point. The dashed ellipse is the curve H(x, y;t*) = 0, where t* = -9,  determined 
by the point P* = ( -1 ,2 /3 ) ,  whose corresponding point P(t*) ,~ (-0.56314,0.89012) on P(t) is the 
variable intersection of P ( t ) and H (x, y; t* ) = 0. 

inversion formula  for the curve is 

x ( x  - l )  
t - - -  

y(y -  1) 

Therefore H ( x , y ; t )  = x ( x  - 1) - t y ( y  - 1), which has four dist inct  base points,  
inc lud ing  the three double  points  and a simple point  ( 1 , 1 )  of  the curve F ( x ,  y)  = O. 

For a point  P* = ( - 1 , 2 / 3 )  not  on P ( t ) ,  the corresponding parameter  value is found 

to be t* = - 9 ;  therefore H ( x , y ;  t*) = x ( x -  1) + 9 y ( y -  1). The variable intersection of  
H ( x ,  y; t*) = 0 and P ( t )  gives the corresponding point  P ( t * )  ~ ( - 0 . 5 6 3 1 4 , 0 . 8 9 0 1 2 )  
of  P* on P ( t ) ,  i.e. P ( t * )  is obtained from a conic projection of  P* instead of  a straight 
l ine project ion.  See Fig. 5. 

6. Summary 

The geometr ic  interpretat ion of  inversion formulae for rational plane curves is studied. 
When  the rat ional  curve is o f  degree k, k = 1, 2 or 3, the inversion formula  can be written 
as rat ional  l inear  funct ion t = N ( x ,  y ) / M ( x ,  y )  in x and y. For a point  P* = (x*, y* ) not 
on P ( t ) ,  the corresponding point  P ( t*)  on the curve, where t* = N ( x * ,  y* ) / M  (x*, y* ), 
is the project ion of  P* from some point  A. When k = 1, A can be any point  in the 
plane but  not  on curve P ( t ) ;  when k = 2, A can be any point  on the curve P ( t ) ;  when 
k = 3, A must  be the on ly  double  point  of  the curve. The geometric interpretation of  
an inversion formula  t = N ( x ,  y ) / M ( x ,  y)  for a general rational plane curve P ( t )  is a 
general ized project ion from the plane into the curve P ( t ) .  This generalized projection 
is de termined by the l inear system H ( x ,  y; t) =- N ( x ,  y )  - t M ( x ,  y)  = 0. It is shown 
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that  all the  s ingu la r  po in t s  o f  P ( t )  are base  poin ts  o f  H ( x , y ;  t)  = 0. The  app l i ca t ions  

of  these  resul t s  are d i scussed  t h r o u g h  some examples .  

The re  are still some  open  p r o b l e m s  in the s tudy of  invers ion  fo rmulae  for ra t ional  

p lane  curves ;  for ins tance ,  how  to find a m i n i m u m  degree  invers ion fo rmula  for  a general  

ra t ional  p l ane  curve,  and w h e n  it is not  un ique  how to charac te r ize  all m i n i m u m  degree  

invers ion  formulae .  A n d  fu r the r  research is needed on the invers ion f(~rmulae for ra t ional  

space  curves  and  ra t ional  surfaces.  
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